
JOURNAL OF APPROXIMATION THEORY 23, 78-85 (1978)

Nonuniqueness of Best Complex Rational Approximations to

Real Functions on Real Intervals

E. B. SAFF*

Department of Mathematics, University ofSouth Florida, Tampa, Florida 33620

AND

R. S. VARGAt

Department of Mathematics, Kent State University, Kent, Ohio 44242

Communicated by John R. Rice

Received September 22, 1976

It seems not to be well known that best complex rational approximations, in
the uniform norm, to a real function on a real finite interval need not be unique.
Because of this, the purpose of this note is to highlight this nonuniqueness with
three different examples.

1. INTRODUCTION

It is well known that for any real continuous function f(x) on [-1, +1]
and for any pair (m, n) of nonnegative integers, the best uniform approxi
mation to f(x) on [-1, +1] by a real rational function in 7T:;',n (defined below)
is unique (cf. Meinardus [2, p. 161], Rice [4, p. 77]). On the other hand,
Walsh [5, p. 356] has given an example of a continuous complex-valued
function, namely fez) := z + =-1, on a certain closed crescent-shaped region
in the complex plane, whose best uniform complex rational approximation
of order 1 is not unique.

While Walsh's example is of great importance, what is interesting is that
this nonuniqueness of best complex rational approximation can hold even
in the situation of most common interest, namely, in approximating real
functions on finite real intervals. Moreover, this nonuniqueness can in fact
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be exhibited for best uniform complex rational approximation of order n,
with n an arbitrary positive integer, which extends Walsh's example in another
direction. The purpose of this note, then, is to give three elementary examples
for which best uniform complex rational approximation to a real continuous
function on [-1, +1] is not unique. These examples point out a somewhat
curious fact, namely, that complex rational functions may give closer uniform
approximations to a real function on [-1, +1] than the best real rational
function of the same type.

For the remainder of this section, we give necessary background and
notation. To begin, for an arbitrary nonnegative integer v, 1Tv' denotes the
collection of all polynomials (in the variable z or x) of degree at most v
having real coefficients, while 1Tv" is the analogous collection of polynomials
with complex coefficients. For each pair (m, n) of nonnegative integers,
1T;;",n denotes the collection of all rational functions which can be written in
the form Pm/qn with Pm E1Tmr and qn E1Tnr, while 1T~,n is analogously the
collection when Pm E 1Tmc and qn E 1Tnc. Obviously, 1T:;',n C 1T~,n'

If Cr [ -1, +1] denotes the collection of all real continuous functions
on [-1, +1] and if II g [I := SUP"'E[-1,+1] Ig(x)I for any real or complex-valued
function g defined on [-1, +1], we further set

E;".n(f):= inf 111 - gil;
gE1T~,n

E':n.n(f):= inf III - gil
gE17~,n

(1.1)

for any IE C r [ -1, +1]. As previously remarked, for any IE Crr-1, +1]
and for any nonnegative integers (m, n), there is a unique Rm.n E 1T:;',n such
that

E;".n(f) = [II - Rm,n II. (1.2)

Moreover, this best approxiation in 1T:;',n is characterized by the following
property: If Rm.n = P/Q with P E1Tm and Q E1Tn having no common factors,
1- Rm •n has an alternation set (cf. [2, p. 161]) of length I, consisting of I
distinct points on [-1, +1], with

I ;? 2 + max{m + deg Q; n + deg P}, (1.3)

(where we adopt the convention that if P == 0, we take deg P = - 00,

deg Q = 0, so that I;? 2 + m in this case). We also remark that (cf. Walsh
[5, p. 351]) for any IE C r [ -1, +1] and for any nonnegative integers (m, n),
there always exists an Rm.n E 1T~,n for which

E':n.n(f) = III - Rm.n II, (1.4)

and it is convenient to distinguish the collection of such best uniform rational
approximants Rm•n by

B':n.n(f) := {R':n.n E 1T':n.rl : III - R':n.n II = E':n.n(f)}, (1.5)
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where the analogous definition for B";,.,n(f) is used. If [ A I denotes the cardi
nality of the set A, i.e., the number of its elements, then, as previously
remarked, B";,.,nCf) = {Rm.n(f)} and I B";,.,n(f) I = 1, while the statement

I B::",n(f) [ > 1 (1.6)

implies simply that there is no unique best uniform rational approximation
in1T::",n tofon [-1, +1].

2. MAIN RESULTS AND EXAMPLES

In thi s section, we state some propositions which form the basis for our
three examples on nonuniqueness. These examples, along with some dis
cussion and some open problems, are also given in this section, but the proofs
for the propositions and examples are given in Section 3. For convenience,
we shall deal only with the classes 1Tm,n (and 1T::",n) for which m = n.

PROPOSITION 1. Given any f E Cr [ -1, +1] and given any nonnegative
integer n,

E;n,2n(f) ~ inf Ilf - Re g [[ ~ E~.n(f) ~ E~.n(f). (2.1)
gE71~,n

Furthermore, if E;n,2n(f) = E~,n(f), then B~,n(f) = B~.n(f) = {Rn,n}'

COROLLARY I. Given f E Cr [-I, +1], let Rn,n = P/Q E B~,n(f), and
set d:= max(deg P; deg Q), where P and Q have no common factors. If
f - R n.n has an alternation set of length at least 2 + 2n + d, then B~,n(f) =
B~,n(f) = {Rn,n}'

PROPOSITION 2. GivenfEC r [-I, +1], let R n.n = P/QEB~,n(f) and let
d:= max(deg P; deg Q) where P and Q have no common factors. If every
alternation set for f - Rn,n has length at most 1 + 2n - d, then

and
E~,n(f) < E~.n(f)

[ B~.n(f)1 > 1.

(2.2)

(2.3)

EXAMPLE 1. Letf E Cr [ -1, +1] be even, and monotone and nonconstant
on [0, 1]. Then

and

I Btl(f) [ > 1.

(2.4)

(2.5)
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We remark that Example 1 includes as a special case the function
fo.(x) := I xo.[, (X> 0, on [-1, +1]. Moreover, it is easy to see that
E;'l(1o.) = t for any (X > O. On the other hand, for (X = 2 and for the specific
function

. (X + (21
/
2

- 1) i ) c
rl.1(x) . = x + i E 7Tl.1 , (2.6)

a short calculation shows that II x 2
- r1.1 II = 21/2 - 1 ~ 0.4142, so that

by definition

(2.7)

Also, we have kindly been informed by Professor Colin Bennett (cf. [1])
that Ef,1(X2) ~ (4/27)1/2 ~ 0.3849.

EXAMPLE 2. For m > 1, let Tm(x) be the Chebyshev polynomial (of
the first kind) of degree m, and set k: = [(m = 1)/2]. Then, for each n with
o~ n ~ k, I B~,n(Tm)1 = I and

o ~ n ~ k, (2.8)

while for k + 1 ~ n ~ m - I,

E~.n(Tm) < E:,iTm),
and

(2.9)

(2.10)

EXAMPLE 3. There exists an entire functionf E iC r [ -1, +1] and an infinite
sequence of distinct positive integers {ni}~l such that

and

[ B~i.ni(f)1 > 1,

Vi ?o 1,

Vi ?o 1.

(2.11)

(2.12)

We now list some open questions suggested by the above examples.

(1) What is maxfECr[-l,+l] I B~,n(f)I? Can this quantity be in fact
infinite?

(2) Does there exist an f E iCr[-1, +1] for which E;"n(f) = E~,n(f),

but for which [B~.n(f)1 > 1?

(3) Find y(n) := inf{E~,n(f)/E~,n(f):fEiCr[-1, +1] withf¢: 7T~.if)}·

(4) Does there exist an entire function f E iC r [ -1, +1] such that
(2.11) to (2.12) are valid for all n ?o 1?

(5) Is I B~.n(1 x 1)1 > 1 for all n ?o 1?
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3. PROOFS

We now give the justifications for the statements made in the previous
section.

The proof of Proposition 1 follows immediately from the fact that if
t E 17~,n , then Re rC(x) and 1m rC(x) belong to 17;n,2n . Corollary 1 is then a
trivial consequence of Proposition 1 and the alternation property (1.3).

Proof of Proposition 2. Let 1 be the length of any longest alternation
set for f - Rn,n on [-I, +I], and call H the set of extreme points off - Rn.n
on [-1, +1]:

H:= {x E [-1, +1]: l(f - Rn.n)(x)[ = E~.n(f)}.

Obviously, IHI?: I. From the knowledge of the set H, 1 - 1 distinct points
Xi with -1 < Xl < X2 < ... < X1- I < 1 can be determined such that if
sex) := n::~ (x - Xi)' then [(f - Rn,n) s](x) is of one sign on H. Without
loss of generality, we may assume that (f - Rn •n) s is positive on H, and
hence, by continuity, there is an open set (!) in [-1, +1] with He (!) for which

Next, set
[(f - R n .n ) s](x) > ° for all XE(!). (3.1)

l+d-n-l

p(x):= 11 (x - Xi)
k~l

and q(x) := S(X)/p(X), (3.2)

(3.3)

and as 1 ?: 2 + n + d from (1.3), then 1+ d - n - 1 ?: 1 + 2d ?: 1, and
as d ~ n by definition, then 1+ d - n - 1 ~ 1 - I, showing that the poly
nomials p and q are well defined. Next, with Rn •n = P/Q and 0 > 0, set

P(x) p(x)
ra(x) := Q(x) + 0 Q(x)(q(x) + i)

P(x)(q(x) + i) + op(x)
Q(x)(q(x) + i)

As 1~ 1 + 2n - d by hypothesis and as deg q = n - d, we see that
ra(x) E 17~,n for any 0 > 0.

Now, with en.n(x) := f(x) - Rn.n(x) = f(x) - (P(x)/Q(x)), then for any
xE[-l, +1],

If(x) - ra(x)1 2

= Ie (x) - 0 p(x) 1

2

n,n Q(x)(q(x) + i)

= e2 (x) _ 28en (n(x) p(x) Re ( 1 ) + 82p2(X)
n.n Q(x) q(x) + i Q2(X)(q2(X) + 1)

_ 2 82p2(X) 28en...(x) SeX)
- en.n(x) + Q2(X)(q2(X) + 1) Q(X)(q2(X) + 1) . (3.4)
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Since we may assume that Q(x) > 0 on [-1, +1], we then have from (3.1)
that 2oen .n(x) s(x)j{Q(X)[q2(X) + I]} is positive at each point of m. Conse
quently, for 0 > 0 sufficiently small, it follows from (3.4) that

Ilf - r811 < E~.n(f),

whence E;"nCf) < E~,n(f), giving (2.2) of Proposition 2.
To establish nonuniqueness, consider any r EB~,n(f). Clearly, the con

jugate f (on [-1, +1]) is also an element of B~,nCf). But f ¥= r, since the
contrary assumption would imply that E~,n(f) = E~,n(f), which would
contradict (2.2). Thus, 1B;"n(f) [ > I. I

We remark that Proposition 2 could also be deduced from Meinardus
and Schwedt [3] (cf. Meinardus [2, p. 136]), but for the sake of completeness,
a short proof of Proposition 2 was included here.

Proof of Example 1. Since f is even on [- I, +I], it follows that
R1,1(x) E Br,l(f) necessarily reduces to a constant, and since f is monotone
and nonconstant on [0, I], it is easy to see that f - Rl,l has an alternation
set on [- I, +I] of longest length I = 3. Thus, the hypotheses of Propo
sition 2 are fulfilled with n = I and d = O. I

Proof of Example 2. Since Tm(x) = Tm(x) - 0 has an alternation set on
[-I, +1] of longest length I = m + 1, then for Rn.n(x) == 0 for 0 ~ n ~ k
where k: = [em - 1)/2], Tm - Rn •n satisfies the hypotheses of Corollary I
with d = 0, and thus I B~,n(Tm)1 = I for all 0 ~ n ~ k. On the other
hand, since Tm(x) - 0 satisfies the hypotheses of Proposition 2 with d = 0
and k + 1 ~ n ~ m - I, then (2.9) and (2.10) follow directly from (2.2)
and (2.3) of Corollary 2. I

Proof of Example 3. Let f(x) := L:l EvT2m -leX), where mv = 3v for
v ?: 1, and where the nonnegative real numbe;s Ev are defined recursively
by means of

where

E =v
min(ov ; Ev- I )

(2m v - l)! '
Vv ?: 2, (3.5)

Vv ?: 2, (3.6)

and where lv-I(x) : = L~:II EkT2mk-l(X). (Note that we are, for convenience,
now writing Ej for Ej,j .) It is clear from (3.5) and (3.6) that f is entire, and
thatfE I[;r[-I, +1]. We shall show that

Vv ?: O. (3.7)
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For this purpose, we first prove that Ov > 0 for all v ~ 1. By definition,
this is true for v = 1, and we inductively assume that Ok > 0 for aliI ::::;: k ::::;:
v-I. From (3.5), then Ek > 0 for 1 ::::;: k ::::;: v-I. Next, we show that
f,,-2 is the unique best uniform rational function in 7T~m -14m -1 to f,,-1

v-2 ' v-2
on [-1, +1]. Indeed,

j~-I(X) - f,,-2(X) = EV-IT2mv_rl(X)

has an alternation set on [-I, +1] of longest length I = 2mv- 1 = 2 . 3v-1,
and we note that (cf. (1.3))

I = 2mv- 1 = 2 + max{4mv_2 - 1 + degf,,_2 ; 4mv- 2 - 1 + O}.

Furthermore,

1= 2m v_ 1 = 1 + 2(4m v_ 2 - 1) - degf,,_2 ,

so that from (2.2) of Proposition 2 (with n = 4mv- 2 - 1 and d = deg!v_2)
and (3.6),

This completes the induction, and also shows that Ev > 0 for all v ~ 1.
To prove (3.7), we first note by the triangle inequality that

E~mv-l(f) ::::;: E~mv-l(f,,+l) + II I EkT2mk-1 II,
k~v+2

and that

(3.8)

E;mv-l(f) ~ E;mv-l(f,,+l) -II i EkT2mk-lll· (3.9)
. k~v+2

Hence, (3.7) will be satisfied if

II i EkT2mk-lll < HE;m v-1(f,,+l) - E~mv-l(f,,+l)] = t8v+2 · (3.10)
k~v+2

But from (3.5), we have that

since mv = 3v, and the proof is complete. I
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Noteaddedinproo[ 1) It has been shown by A. Ruttan [6] that there is a real continuous
function [-1, +1] for which I B~Jf)1 = 00, which settles open problem (1). 2) A. A.
Gonear has recently informed us that his paper "The Rate of Approximation by Rational
Fractions and the Properties of Functions" (1968) mentions the possibility ofnonuniqueness
in a footnote. Goncar's student K. N. Lungu studied the problem in more detail. He
showed [Matematicheskie Zametki, Vol. 10, No.1, pp. 11-15, July (1971)] that if for a
continuous function I(x) on [- I, 1] we set M: = max[_1.l] I(x), m: = mint_l.l] I(x) and if
there exist points -1 <: X o < Xl < ... < X n <: 1, n> 1, such that the set {x:/(x) = M}
consists of Xk with even subscripts and the set {x: I(x) = m} consists of Xk with odd sub
scripts, then

This result is but a special case of our Proposition 2 because under the above hypotheses,
Rn-t.n-l(x) "'" (M + m)/2 and f - Rn- l .n- 1 has largest alternation set of length n + 1,
which is not greater than 1 + 2(n - 1) - 0 = 2n - 1 for n > 1. For the Chebyshev
polynomials Tm(x), Lungu's result gives E~ n(Tm) < E~ n(Tm) only for n = m - 1, while
our result gives all the integers n for which this inequ~lity holds, namely [em - 1)/2] ;;:;;
n;;:;;m-1.
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